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Coulomb Blockade and Quantum Fluctuation of a
Nondissipative Mesoscopic Capacitance
Coupling Circuit with Source
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The quantum mechanical effect of electric charge in a nondissipative mesoscopic
capacitance coupling circuit is studied and the condition for Coulomb blockade
(CCB) is derived. It is pointed out that the CCB is related not only to the junction
capacitance, but also to the inductance. The quantum fluctuation of this circuit
is also discussed.

1. INTRODUCTION

In recent years, rapid progress in nanometer techniques and nanoelec-

tronics (Srivastava and Widom, 1987; Buot, 1993) has made it possible for
the miniaturization of integrated circuits and components to reach atomic

dimensions (Garcia, 1992). When the transport dimension reaches a character-

istic length, namely when the charge-carrier inelastic coherence length and

the charge-carrier confinement dimension approach the Fermi wavelength,

the physics of classical devices based on the motion of particles and ensemble

averaging is expected to be invalid. The wave nature of electrons, discreteness
of energy levels, and sample-specific properties must now be taken into

account and quantum mechanical effects should become much more

important. Recently, much attention has been paid to the study of mesoscopic

physics (Dekker, 1979; Chen et al., 1995, 1996a, b; Li and Chen, 1996; Yu

et al., 1997a, b). On the basis of our recent work (Yu et al., 1997a), the

present paper studies the quantum mechanical effect of electric charge in a
nondissipative mesoscopic capacitance coupling circuit, derives the condition
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for Coulomb blockade (CCB), and studies the quantum fluctuation of this

circuit.

2. Coulomb Blockade of a Nondissipative Mesoscopic Capacitance
Coupling Circuit

The classical Hamiltonian for a classical nondissipative capacitance

coupling circuit with source is

H 5
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q 2
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2 q1 %(t) (1)

where Li , Ci , C0, and qi (i 5 1, 2) stand for inductance, capacitances, and

charge, respectively. %(t) is the electromotive force, a function of time. The

quantities pi 5 Li dqi/dt and qi (i 5 1, 2) are conjugate. If we let

[qÃi , pÃi] 5 i " (2)

then the quantization of equation (1) can be realized. In the previous work

(Yu et al., 1997a) we only considered the continuous electric charge. As a

matter of fact, the electric charge is discrete and this must play an important

role in the theory of quantized mesoscopic circuits. To take account of the

discreteness of electric charge, we impose that the eigenvalues of the self-
adjoint operator qi (i 5 1, 2) take discrete values, namely

qÃ1 | q & 1 5 nqe | q & 1 , qÃ2 | q & 2 5 mqe | q & 2 (3)

where n, m P Z (set of integers), and qe 5 1.602 3 10 2 19 C, the elementary

electric charge; | q & 1 and | q & 2 stand for eigenstates of electric charge for circuit
1 and circuit 2, respectively. So we can define two minimum shift operators

QÃ
1 5 exp (iqepÃ1/ " ), QÃ

2 5 exp (iqepÃ2/ " ) (4)

for which the following commutation relations hold:

[qÃ1, QÃ
1] 5 2 qeQÃ

1, [qÃ1, QÃ1
1 ] 5 qeQÃ1

1 , QÃ1
1 QÃ

1 5 QÃ
1QÃ1

1 5 1 (5)

[qÃ2, QÃ
2] 5 2 qeQÃ

2, [qÃ2, QÃ1
2 ] 5 qeQÃ1

2 , QÃ1
2 QÃ

2 5 QÃ
2QÃ1

2 5 1 (6)

These relations can determine the structure of the whole Fock space. We can

also obtain the complete relations, i.e., S n e Z | n & ^ n | 5 1 and S m e Z | m & ^ m | 5 1.
On the other hand, we can also obtain the eigenstate and eigenvalue of the

operators p1 and p2, respectively.

Similar to the known results (Li and Chen, 1996), we can define the

right and left discrete derivative operators as follows:
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¹ (1)
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Consequently, one can obtain the self-adjoint ª momentumº operators
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and the free Hamiltonian operators
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We consider the adiabatic approximation so that % (t) is considered as

a constant %. Regarding the discreteness of electric charge, the SchroÈ dinger

equation for a nondissipative mesoscopic capacitance coupling circuit takes

the form

F 2 " 2

2q 2
eL1

(QÃ
1 1 QÃ²

1 2 2) 1
qÃ21
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where C10 5 C1C0/(C1 1 C0) and C20 5 C2C0 /(C2 1 C0).

We introduce the following transformations:

F qÃ1
qÃ2 G 5 3 !

L2

L1

0

0 ! L1

L2 4 3 cos
w
2

sin
w
2

2 sin
w
2

cos
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F PÃ
1
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0
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w
2

sin
w
2
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w
2
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w
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Utilizing equations (14) and (15), we find for equation (13)
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F 2 " 2

2q 2
eL1 H 2 cos F qe
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L2 1 PÃ81 cos
w
2
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2 2 G 2 2 J
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1
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1
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8
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where

a 2 1 5
1
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2

1
1
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2

1
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(17)
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1
1
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2
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L1
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2

(20)

In order to eliminate the cross term in equation (16), let g 5 0; one have

tan w 5
2

C0 F 1 1

C0

1
1

C1 2 1 L2

L1 2 2 1 1

C0

1
1

C2 2 1 L1

L2 2 G
2 1

(21)

Due to the discreteness of electric charge, equation (3) must hold, i.e.,

% 5
2 nqe

a ! L2/L1 cos( w /2)
, % 5

2 mqe

b ! L2/L1 sin( w /2)
(n, m P Z )

(22)

We have

% 5
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m cos( w /2) 1 n sin( w /2) F 1 1
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1
1
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1 1 1
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1
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m

n
5

b
a
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w
2

(24)

Equations (23) and (24) are the CCB of a nondissipative mesoscopic capaci-

tance coupling circuit. We find that the adiabatic approximation electromotive
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force % only takes discrete values, given by equation (24). On the other hand,

we can also find that the CCB is related not only to the junction capacitances,

but also to the inductances.

3. QUANTUM FLUCTUATION OF A NONDISSIPATIVE
MESOSCOPIC CAPACITANCE COUPLING CIRCUIT

According to the relations (Li and Chen, 1996)

^ p 8i | QÃ
i 1 QÃ1

i 2 2 | pi & 5
4 p "
qe F cos 1 qe

"
pi 2 2 1 G d (pi 2 p 8i ) (25)

^ p 8i | qÃ2i | pi & 5
2 2 p " 3
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- 2

- p 2
i

d (pi 2 p 8i ) (26)

the formula for expressing equation (16) in the p representation is
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where we have adopted % 5 0 for simplicity.

It is difficult to obtain the exact solution of equation (27). We now make

the following approximate discussion. Choosing the proper values of Li and

Ci so as to make sin ( w /2) , 0 (in this case, we do not take cos( w /2) 5 1],

we find that equation (27) is equivalent to the two Mathieu equations

H 2 " 2
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In terms of the conventional notations (Wang and Guo, 1965; Gradshteyn

and Ryzhik, 1980), the solution of equation (28) is

c Ä 1
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or
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cos
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2
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and the solution of equation (29) is
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where ª 1 º and ª 2 º denote the even and odd parity solutions, respectively,

and we have quantum numbers l1, l2 5 0, 1, 2, . . .; j 1 5 (2 " /q 2
e)

2 a /L1 and

j 2 5 (2 " /q 2
e)

2 b /L2. Here ce(z, j ) and se(z, j ) are periodic Mathieu functions.

In this case, there exist infinitely many eigenvalues {a1} and {b1} that are
not identically equal to zero. Then the energy spectrum is expressed in terms

of the eigenvalues a1, b1 of the Mathieu equation,

EÄ 1l1 5
q 2

e

8 a
al1( j 1) 1

" 2

q 2
eL1

, EÄ 2l1 1 1 5
q 2

e

8 a
bl1 1 1 ( j 1) 1

" 2

q 2
eL1
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q 2

e

8 b
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q 2
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e
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" 2

q 2
eL2
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In consideration of the conditions j 1 , , 1 and j 2 , , 1, the Mathieu

equation can be solved by the WKB method. The self-adjoint operators, after

transformation by equation (15), take the forms

PÃ81 5
"
qe

sin F qe

" ! L1

L2

cos
w
2

p 81 G , PÃ82 5
"
qe

sin F qe

" ! L2

L1

cos
w
2

p 82 G
(36)

We have

^ cel1 | PÃ81 | cel1 & 5 ^ sel1 1 1 | P 81 | sel1 1 1 & 5 0 (37)

^ cel2 | PÃ82 | cel2 & 5 ^ sel2 1 1 | PÃ82 | sel2 1 1 & 5 0 (38)

Equations (37) and (38) indicate that the average value of the current is zero

whether this circuit is in the ground state or in an excited state. We now

calculate the fluctuation of electric current (apart from a factor 1/L) for the

ground state:
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^ ce0 | PÃ82
1 | ce0 & 5

1
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2
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1
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3
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Therefore we conclude that there exist current quantum zero-point fluctua-

tions, and the fluctuations between circuit 1 and circuit 2 are correlated. This

conclusion will be useful in the design of nanometer electric circuits.
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